Rödl & Partner

GRMF HYDROGEN & GEOTHERMAL WEBINAR

Kai Imolauer Nuremberg, 16. November 2023

AGENDA

1	General Information
2	European development
3	Current situation in Germany
4	Conclusion

RÖDL & PARTNER

The foundation of our dynamic development: 1977 Opening of the law company in Nuremberg

Todays Locations: Germany: 21

International: More than 100 Offices in 50 Countries

Development of the number of employees:

1990	174 employees
2000	2.000 employees
2023	More than 5.500 employees

PRIMARY ENERGY CONSUMPTION EUROPE / GERMANY

Primary energy consumption Germany 2022

Quelle: BP, Energy Institute, destatis

Quelle: AG-Energiebilanzen

HOW WILL THE FULLY "DEFOSSILIZED" ENERGY SYSTEM OF THE FUTURE WORK?

Rödl & Partner

"Efficiency" is not an end in itself in the energy system of the future - often not even a target-oriented criterion

CO₂ -low/free energy supply

THE ROLE OF HYDROGEN IN THE ENERGY SYSTEM OF THE FUTURE

PRODUCTION Blue & turquoise **Green electrolysis** hydrogen in the **Power generation** ramp-up phase 0 Derivatives 9 production Truck Ship Oxygen (ammonia, LOHC, Sun Water methanol, eFuels dimethyl ether н Direct 650 Train Pipeline Green electricity Water Green transportation Wind Geothermal Hydrogen USE USE **CURRENT HYDROGEN Raw materials/fuel** Mobility **Electricity and heat** in the industry Electricity & Reverse Local & district heat supply power heating Mains Battery Chemicals Steel Glass Emission-free drive systems for buildings supply generation

TRANSPORT

Source: Friedrich-Alexander-University Erlangen-Nuremberg, Prof. Dr. Wasserscheid

OVERVIEW OF THE INDIVIDUAL STORAGE METHODS

	Pro	Со	ntra
Ammonia (NH) ₃	 Lower requirements for storage tanks Transportable at 10 bar 	$_2$ and H $_2$ react at 200 locations of the second secon	bar and 350 °C Jences of leaks)
Liquid Organic Hydrogen Carrier (LOHC)	 Similarly manageable as diesel Transport with standard pressure 	atalytic reaction for "H ₂ 0 - 50 bar and T= 200 Discharge" at 250 - 320 arrier medium must be cation to be loaded aga	-loading" - 250°C) °C returned to the shipping ain
Gaseous	Can be used directly	arge high-pressure tanl ar)	ks required (350 or 700
Liquid	Less space requiredHigh storage densityPure form of hydrogen	nergy requirement for t aintaining -253°C ener	he conversion gy-intensive
Metal Hydrides	 Safe, standard pressure and easy to handle 	ery heavy and therefore ansportation	e unsuitable for
Methanol	 Easy to handle and safe Reaction from CO₂ and H₂ 	O ₂ must be stored dur	ing H discharge ₂

LOHC –LIQUIFIED ORGANIC HYDROGEN CARRIER

2 EUROPEAN DEVELOPMENT

Phase 2 (2024 - 2030):

electrolysers

2

- Installation of 40 GW H₂ electrolysers and production of 10 million tons by 2030
- Production close to users and expansion into new sectors
- An additional 40 GW of green hydrogen capacity in the eastern and southern regions of Europe

Phase 3 (2030 - 2050):

- **Large-scale use** of green H_2 in sectors that are difficult to decarbonize
- 300GW offshore wind energy and 40 GW marine energy

EUROPA'S PIPELINE PLAN

European Hydrogen Backbone is an initiative of **31 energy network operators** who have jointly defined an H₂ European network for **2040**

Key points are the **connections to Africa** and the **port area of Northern Europe**

Vision can be realized cost-effectively with close cooperation between EU member states and under stable and regulatory framework conditions

3 CURRENT SITUATION IN GERMANY

GERMANY'S HYDROGEN STRATEGY

The German government's hydrogen strategy was presented in June 2020

- Future package of € 7 billion for projects and research & development
- Additional € 4 billion for international partnerships

According to the coalition agreement, electrolysis capacity by 2030: **10 GW** through expansion of offshore wind energy and international partnerships

٠

- Production H₂ 2030: 1 million t/a (approx. 30-50% total energy demand D)
- Demand by 2045: increase to 265 TWh (>70% import)

----(

- Development of a domestic market for hydrogen technologies
- Establishment as market
 leader

© Rödl & Partner

GERMANY'S HYDROGEN DIPLOMACY

VISION FOR A GERMANY-WIDE HYDROGEN NETWORK

Start of expansion with freed-up natural gas pipelines in the **Netherlands, Lower Saxony** and NRW

Vision comprises approx. **5,900 km of** pipelines and is based **>90% on the existing natural gas network**

H₂ -network 2030 approx. **5,100km** (of which **3,700km** converted gas pipelines)

-> Investments: € 6 billion

Many projects **are already being planned** and some small projects are about to **start construction**

FNB scenarios for the H₂ grid

Source: Hydrogen Roadmap North Rhine-Westphalia. FNB Gas

HYDROGEN CORE GRID GERMANY FOR 2032

FOCUS: AFRICA

TRANSPORTATION TO EUROPE

4 CONCLUSION

4 CONCLUSION

YOUR CONTACT PERSON

Kai Imolauer

Partner

Rödl & Partner Äußere Sulzbacher Str. 100 90491 Nuremberg

T +49 (911) 9193 -3606

kai.imolauer@roedl.com

www.roedl.com/ee www.renerex.com

